Proof-by-Contradiction

To Prove: Statement p.
Proof: (by Contradiction)
Suppose ~p.
$\therefore \mathrm{q}$
$\therefore \sim \mathrm{q}$
Task:
[Suppose ~p]
$[\therefore \mathrm{q}]$
$[\therefore \sim \mathrm{q}]$
$\therefore \mathrm{q} \wedge \sim \mathrm{q}$ ("This is a contradiction.")
$\therefore \mathrm{p}$, by proof-by-contradiction. QED
Comments about Proof-by-Contradiction:
1.) An explicit statement that a contradiction has been reached is required:

Example: Assume that, earlier in the proof, it was pointed out that $1 / 2$ is not an integer.
Assume that now it has just been established that $1 / 2$ is an integer.
You can state: "Therefore, $1 / 2$ is not an integer and $1 / 2$ is an integer, which is a contradiction." Or, you can state: "Therefore, $1 / 2$ is an integer, which contradicts the fact that $1 / 2$ is not an integer."

Notice that this second wording combines the [$\therefore \sim q$] task and the [$\therefore \mathrm{q} \wedge \sim \mathrm{q}]$ task into one sentence.

Thus, a proof-by-contradiction requires the use of one of the terms "contradicts" or "contradiction".
2.) After arriving at a contradiction, you must immediately conclude the negation of the supposition.
3.) You are not allowed to start a proof-by-contradiction with the phrase "Suppose not." Instead, you must "Suppose" the explicit wording of the negation of the statement to be proved.
4.) Use "Proof-by-Contradiction" to prove that something does not exist or that an object does not have a particular property.

Example:

Task
To Prove: There does not exist an integer which is both even and odd.
Proof: (Proof-by-Contradiction)
Suppose there exists an integer n which is both even and odd.
Note, $1 / 2$ is not an integer.
By definitions of "even" and "odd", there exist integers k and ℓ such that $n=2 k$ and $n=2 \ell+1$.
$\therefore 2 k=2 \ell+1$, by substitution. $\quad \therefore 2(k-\ell)=1 . \quad \therefore(k-\ell)=1 / 2$.
$\therefore 1 / 2$ is an integer since $(k-\ell)$ is an integer.
$\therefore 1 / 2$ is an integer and $1 / 2$ is not an integer, a contradiction
\therefore There does not exist an integer which is both even and odd,
[$\therefore \mathrm{p}$] by proof-by-contradiction.

Proof-by-Contraposition:

The method of Proof-by-Contraposition to prove an "If A, Then B" statement involves the writing of a direct proof of its contrapositive statement: "If Not B, Then Not A."

The Design for Proofs of Conditional Statements by Contraposition

To Prove: IF p, THEN q .
Proof: (by Contraposition)
Suppose $\sim q$.
$\therefore \sim p$
[\therefore IF \sim q, THEN \sim p .] [Optional]
\therefore IF p, THEN q , by Contraposition.

$$
\begin{aligned}
& \text { [Suppose } \sim \mathrm{q}] \\
& {[\therefore \sim \mathrm{p}]} \\
& {[\therefore \sim \mathrm{q} \rightarrow \sim \mathrm{p}]} \\
& {[\therefore \mathrm{p} \rightarrow \mathrm{q}]}
\end{aligned}
$$

Tasks for proving $\mathrm{p} \rightarrow \mathrm{q}$

QED

Proposition 4.5.4: For all integers n, if n^{2} is even, then n is even.
Proof: [by Contraposition]
Let n be any integer. [We will prove the statement: "If n is not even, then n^{2} is not even."]
Suppose n is not even.
Then, by the Parity Corollary (and by Elimination), n is odd.
Therefore, there exists an integer k such that $\mathrm{n}=2 \mathrm{k}+1$.
$\therefore \mathrm{n}^{2}=(2 \mathrm{k}+1)^{2}$, by substitution,
$=\left(4 \mathrm{k}^{2}+4 \mathrm{k}\right)+1$
$\left.=4\left(\mathrm{k}^{2}+\mathrm{k}\right)+1=2\left(2\left(\mathrm{k}^{2}+\mathrm{k}\right)\right)\right)+1$
$=2 \mathrm{t}+1$, where $\mathrm{t}=2\left(\mathrm{k}^{2}+\mathrm{k}\right)$, which is an integer.
$\therefore \mathrm{n}^{2}$ is odd, by definition of "odd".
$\therefore \mathrm{n}^{2}$ is not even, since no integer is both even and odd;
[As was proved on the other side of this page]
Therefore, if n^{2} is even, then n is even, by proof-by-contraposition.
\therefore For all integers n , if n^{2} is even, then n is even, by Direct Proof.

