Proof-by-Contradiction

To Prove: Statement p.	
Proof: (by Contradiction)	<u>Task:</u>
Suppose ~p.	[Suppose ~p]
 ∴ q	[.:. q]
∴ ~q	[∴~q]
\therefore q \land ~q ("This is a contradiction.")	[.: q ^~q]
\therefore p , by proof-by-contradiction. QED	[∴p]

Comments about Proof-by-Contradiction:

1.) An explicit statement that a contradiction has been reached is required:

Example: Assume that, earlier in the proof, it was pointed out that 1/2 is not an integer.

Assume that now it has just been established that $\frac{1}{2}$ is an integer.

You can state: "Therefore, 1/2 is not an integer and 1/2 is an integer, which is a contradiction."

Or, you can state: "Therefore, 1/2 is an integer, which contradicts the fact that 1/2 is not an integer."

Notice that this second wording combines the [\therefore ~q] task and the [\therefore q \land ~q] task into one sentence.

Thus, a proof-by-contradiction requires the use of one of the terms "contradicts" or "contradiction".

- 2.) After arriving at a contradiction, you must immediately conclude the negation of the supposition.
- 3.) You are not allowed to start a proof-by-contradiction with the phrase "Suppose not." Instead, you must "Suppose" the explicit wording of the negation of the statement to be proved.
- 4.) Use "Proof-by-Contradiction" to prove that something does not exist or that an object does not have a particular property.

Example:

Task

To Prove: There does not exist an integer which is both even and odd.	
Proof: (Proof-by-Contradiction)	
Suppose there exists an integer n which is both even and odd.	[Suppose ~p]
Note, $\frac{1}{2}$ is not an integer.	[∴q]
By definitions of "even" and "odd", there exist integers k and ℓ	
such that $n = 2k$ and $n = 2\ell + 1$.	

$\therefore 2k = 2\ell + 1$, by substitution. $\therefore 2(k-\ell) = 1$. $\therefore (k-\ell) = \frac{1}{2}$.	
\therefore 1/2 is an integer since (k – l) is an integer.	[∴~q]
\therefore 1/2 is an integer and 1/2 is not an integer, a contradiction	[.:. q . ^ ~ q]
\therefore There does not exist an integer which is both even and odd,	[∴p]

QED

by proof-by-contradiction.

Proof-by-Contraposition:

The method of Proof-by-Contraposition to prove an "If A, Then B" statement involves the writing of a direct proof of its contrapositive statement: "If Not B, Then Not A."

The Design for Proofs of Conditional Statements by Contraposition

To Prove: IF p, THEN q . Proof: (by Contraposition)	Tasks for proving $p \rightarrow q$
Suppose ~q.	[Suppose ~q]
 ∴ ~p	[.:. ~p]
[∴ IF ~q, THEN ~p .] [Optional]	[∴~q → ~p]
: IF p, THEN q , by Contraposition.	[∴ p → q] QED

Proposition 4.5.4: For all integers n, if n^2 is even, then n is even.

Proof: [by Contraposition]

Let n be any integer. [We will prove the statement: "If n is not even, then n^2 is not even."] Suppose n is not even.

Then, by the Parity Corollary (and by Elimination), n is odd.

Therefore, there exists an integer k such that n = 2k + 1.

 \therefore n² = (2k + 1)², by substitution,

= (4 k² + 4 k) + 1= 4 (k² + k) + 1 = 2 (2 (k² + k)) + 1

= 2t + 1, where $t = 2(k^2 + k)$, which is an integer.

 \therefore n² is odd, by definition of "odd".

 \therefore n² is not even, since no integer is both even and odd; [As was proved on the other side of this page]

Therefore, if n^2 is even, then n is even, by proof-by-contraposition.

 \therefore For all integers n, if n² is even, then n is even, by Direct Proof. QED